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ABSTRACT
Computer vision systems in sensor nodes of the Internet of Things
(IoT) based on Deep Learning (DL) are demanding because the DL
models are memory and computation hungry while the nodes often
come with tight constraints on energy, latency, and memory. Conse-
quently, work has been done to reduce the model size or distribute
part of the work to other nodes. However, then the question arises
how these approaches impact the energy consumption at the node
and the inference time of the system. In this work, we perform a
case study to explore the impact of partitioning a Convolutional
Neural Network (CNN) such that one part is implemented on the
IoT node, while the rest is implemented on an edge device. The goal
is to explore how the choice of partition point, quantization method
and communication technology affects the IoT system. We identify
possible partitioning points between layers, where we transform
the feature maps passed between layers by applying quantization
and compression to reduce the data sent over the communication
channel between the two partitions in Tiny YOLOv3. The results
show that a reduction of transmitted data by 99.8% reduces the net-
work accuracy by 3 percentage points. Furthermore, the evaluation
of various IoT communication protocols shows that the quantiza-
tion of data facilitates CNN network partitioning with significant
reduction of overall latency and node energy consumption.
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1 INTRODUCTION
Vision sensors alongside the development of advanced image pro-
cessing algorithms such as CNNs, have enabled large-scale deploy-
ments of smart camera IoT nodes. The range of application cases is
expandingthem including areas of industrial monitoring [1], smart
city, and healthcare monitoring [11] among others. On the one
hand, to meet the accuracy demands of such design cases, neural
networks with deeper and wider architectures have been devel-
oped. On the other hand, we have IoT nodes that rely on limited
resources such as computational capabilities, memory, and energy
consumption. The contrasting nature of these two aspects raises
the issue of where we should implement the CNN models: on the
node, the edge device, the cloud server, or distributed among them.

However, the design of such nodes remains challenging. The
two major contradicting aspects are on the one hand, to meet the
accuracy demands of the application and on the other hand, build
systems around the typically limited resources of IoT nodes such
as computational capabilities, memory, and energy consumption.
While the accuracy requirement leads to the development of neural
networks with deeper and wider architectures this increases the
resource consumption on IoT nodes, if the network is implemented
on the node itself. Therefore, the CNN analysis is often facilitated
in the cloud or at the edge rather than the node itself. Various CNN
models such as e.g. Tiny YOLO have been developed specifically for
use on resource-constrained devices. To further reduce the compu-
tational cost of CNNs optimization techniques such as pruning [9]
or quantization [15] have been proposed to minimize the network
size and thus reduce the memory and execution time requirements.
This can enable the deployment of the models on the nodes [12].
Another option is to apply CNN partitioning [17] and thus offload
part of the model execution to another node at the cost of addition-
ally having to transfer the intermediate results. Various approaches
exist for this trying to optimize execution time or energy consump-
tion of the node. These approaches typically target one specific
solution to either split the network between edge and cloud or dy-
namically adapt the offloading to multiple nodes. What is missing is
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however a systematic review of the design space between possible
partitioning points, applied communication technology and options
to reduce the data exchanged between the partitions in order to
identify optimal partitioning strategies.

To address this issue, we explore the design space for a given
application scenario by partitioning the required CNN between the
IoT node and the edge. We chose a caregiver tracking system [3]
trained with the MIUN-Feet dataset [16] as an application example.
In this application, the camera is located at the wheelchair with
the goal to give control information to the wheelchair to follow the
caregiver. This leads to a system design where real-time constraints
apply to the decision making for the CNN. Therefore, offloading the
data to the cloud is infeasible, while performing all calculations at
the IoT node located on the wheelchair might be inefficient in terms
of energy consumption. Our goal is to identify the partitioning
configuration that provides the optimal energy consumption for the
IoT node as the sum of local processing and communication energy.
To explore the design space further, we analyze how data reduction
techniques at the partition point can create a waist tightening effect
to further reduce the required communication energy by limiting
the data amount to be transferred.

Existing studies consider the selection of the partitioning point
location in the CNN as well as options to split the amount of data.
However, to the best of our knowledge, the impact of minimizing
the data at the partitioning point has not been considered so far.

2 RELATEDWORK
Memory, energy consumption and latency are the key constraints
when designing IoT nodes. Regarding computer vision (CV) ap-
plications, balancing these requirements is important since the
algorithms often feature resource hungry algorithms such as CNNs.
Therefore, much attention has been spent on options to optimize the
node with design cases ranging from doing all calculations in the
IoT node or in the cloud as extreme endpoints. Various approaches
target intermediate solutions where only part of the calculations is
executed at the respective endpoint. Edge computing added another
design space option, by introducing offloading capabilities closer
to the IoT node. Offloading approaches partition the vision algo-
rithm and aim for distributed execution. In Shallari et al. [13], the
authors analyze the computation and communication inter effects
of partitions between the node and the cloud. They target a smart
camera system featuring traditional image processing methods. The
same system type is analyzed in [8], where the authors studied the
impact of the input data size on the selection of the partition point.

However, system partitioning applies not only to traditional
systems but also to CNNs [14]. Two general approaches exist for
this: an in-layer approach dividing the calculations at one layer
and an approach that splits the CNN between two layers. An in-
layer approach allows parallel and/or distributed execution of the
calculations at this layer. One example is introduced by Zhuoran
et al. [17]. They describe a technique to parallelize convolutional
computations and decrease the memory usage and communication
costs for initial convolutional layers. Similarly, the authors divided
the feature maps and filters along the depth dimension to distribute
them among Fog resources in [2]. In [10], the authors proposed an
adaptive partitioning algorithm called "DINA-P" for accelerating the

process of distributed inference via edge computing. This method
involves dividing the convolutional layers into smaller sections
and distributing the workload across multiple devices. While these
approaches are able to enhance the inference time of the model,
they come at the cost of additional data transfers for each part of
the partitioned layer. While the communication effort is reduced for
a single transmission, the parallel execution with multiple targets
adds an overhead to the communication.

Partitioning the CNN model between two layers, results in two
parts of the model that can be executed in different locations, requir-
ing only one data transfer. However, depending on the partitioning
location, the data amount can be quite large, resulting in high com-
munication cost. In [5], the authors presented “Neurosurgeon” a
system that considers latency and energy of inference and commu-
nication to dynamically select the optimal partition point in e.g.
AlexNet and VGG for image processing. To build the system, they
perform a design space analysis but do not consider the option to
further reduce the data at the partition point in their analysis. The
authors in [7] follow a similar strategy. Their approach introduces
additional classifiers at the intermediate partition points to evalu-
ate the impact of early exiting the original CNN model. These exit
points can be executed on the node or the server (edge or cloud)
and thus provide a faster inference by skipping part of the model.
However, the exit-classifier also adds further computational load to
the node if executed there while in other cases the communication
of the intermediate results remains crucial. To mitigate this, the au-
thors apply quantization to reduce the bit-width of the data from 32
bit to 8 bit. In [11], the authors proposed a similar framework with
the goal to mitigate bandwidth availability between the device and
an edge server highlighting the importance to analyze the tradeoff
between latency and accuracy. Their work finds partition points
based on the bandwidth and applies early-exiting to leverage the
latency of all in-node inference at the cost of lower accuracy.

These approaches can benefit from further exploration of the
data requirement at the partitioning points, as less data to communi-
cate also facilitates good latency even under constraint bandwidth
conditions. Therefore, analyzing the options of applying lower than
8 bit-resolution quantization together with appropriate packing
as well as compression for different partition points is a crucial
amendment to the existing work.

3 METHODOLOGY
We use the CV system of an autonomously driving wheelchair
as base for our case study. The original work in [3] trained Tiny
YOLOv4 on a custom dataset in order to detect the feet of a caregiver.
The focus there was to find a system that is able to solve the tracking
task. In this study, we use the same dataset, but rely on Tiny YOLOv3
(TY3) as CNN detector because it is a smaller version of the model
without affecting the detection accuracy for this application. The
performance of the unchanged TY3 model is used as benchmark
and compare it to the partitioning options.

To study the options, we identified suitable partition points in
the TY3 architecture. Essentially, we focus on layers that have a
sequential data path only. Partitioning the model at points with par-
allel structures would require to transfer additional data since these
structures reuse intermediate information [8]. Thus, we consider
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the start and the end of parallel sections, where the data is compact
already as partitioning points. In case of TY3, this results in five
possible partition points 𝑗 = [1..5] that are located at the beginning
of the model. In addition, we add two more partition points 𝑗 = 0
and 𝑗 = 6 at the beginning and end of TY3 respectively. These two
partition points represent the extreme cases with all processing
done locally on the IoT node ( 𝑗 = 6) and all processing done on the
edge device ( 𝑗 = 0). The model architecture is depicted in Figure 1.

Figure 1: Abstract model highlighting the sequential data path of
the Tiny YOLOv3 architecture and the resulting partitioning points.

The goal of the study is then to analyze the partitioning design
space so that the node energy and overall latency is minimized.
Given a CNN with 𝑁 ≥ 1 layers, the energy consumption in the IoT
node 𝐸𝑁𝑜𝑑𝑒 is derived as the sum of the energy for processing 𝐸𝑃
the different layers implemented on the IoT node and the energy
for communicating data 𝐸𝐶 from the node to the edge device at the
partitioning point, which is defined as follows [13]:

𝐸𝑁𝑜𝑑𝑒 =

𝑗∑︁
𝑖=1

(𝐸𝑃 (𝑡𝑖 , 𝑃)) + 𝐸𝐶 (𝑐 𝑗 ,𝐶) (1)

where 𝑖 ∈ [1..𝑁 ] denotes the individual CNN layers, 𝑡𝑖 is the com-
putation task in layer 𝑖 , and 𝑗 is the partitioning point. For a given
partition point 𝑗 , 𝑐 𝑗 represents the amount of data to be commu-
nicated with technology 𝐶 . 𝐸𝑃 and 𝐸𝐶 are the functions for the
processing and communication energy, respectively. 𝑃 refers to the
processing platform hardware characteristic. Similarly, the latency
depends on the in-node processing, the communication duration
for the given technology as well as the edge device processing.

The state of the art contains several works that explored the
partitioning design space. However, to the best of our knowledge
additional options to reduce the data that is sent between the two
partitions have not been studied. Instead, the approaches select a
partition point with minimal data as provided by the model archi-
tecture. There exist further options to reduce the data amount to be
sent which could have a significant impact on the energy consump-
tion of the IoT node and the system latency. We explore the impact
of quantization to reduce the bit-precision, a suitable packing of
data into bytes to avoid padding, and additional compression. While
these methods result in additional processing latency and energy
cost, our hypothesis is that the reduction of the data is worth the
effort. As a result, we add the corresponding operations in between
the layers at the partition point 𝑗 as shown in Figure 2.

During an inference run, the calculations of the layers until the
partitioning point 𝑗 are implemented in the IoT node. Then, we
quantize the output feature map 𝑑𝑏

𝑗
, pack it into bytes, and use

ZIP-compression on the packed data to further reduce the volume

Figure 2: Schematic of a partitioning point with added functionality
for handling data reduction on the node partition and unpacking
the data at the edge partition.

of data 𝑐𝑏
𝑗
sent over communication channel𝐶 . Consequently, once

arriving on the edge node, the data 𝑐𝑏
𝑗
is uncompressed, unpacked

into𝑑𝑏
𝑗
, and converted back to a floating point representation, before

the remaining layers of TY3 are processed on the edge device. The
communication technology has an impact on the latency and energy
consumption. We consider Bluetooth Low Energy, WiFi and LTE
as popular communication technologies for IoT applications, with
a requirement for higher bandwidth.

In order to decrease the amount of information in feature maps
at the partitioning layer, we employed quantization methods. These
methods are applied to a data distribution consisting of all feature
maps in a partitioning layer for all images in the dataset. The
data distribution is identified by its non-symmetrical nature, with a
notable skew to the right-hand side. The first quantization method
is a variation of Min-Max normalization and involves reducing the
information to different levels of bit-precision, ranging from 8 bits
to 1 bit in increments of 1 bit. This method utilizes a shift value as
a reference point and scales the data points to the dynamic range
of the data distribution, as defined by:

𝑑𝑏𝑗 =

⌊
𝑓𝑗 − 𝑆

𝑚𝑎𝑥 − 𝑆
× 2𝑏−1

⌋
, with 𝑏 ∈ [1 − 8] . (2)

𝑑𝑏
𝑗
is the quantized data at partition point 𝑗 , 𝑏 denotes the bit-

precision, and 𝑓𝑗 is the floating point representation of the data at
the output of layer before partition point 𝑗 . 𝑆 defines the shift level
produced by the value of the average between the maximum (𝑚𝑎𝑥 )
andminimum (𝑚𝑖𝑛) values of the dynamic range of the featuremaps
and is calculated as 𝑆 = (𝑚𝑎𝑥 −𝑚𝑖𝑛)/2. To convert the quantized
value back to a floating point representation, we apply

𝑓 ′𝑗 = 𝑑𝑏𝑗 ×
(
𝑚𝑎𝑥 − 𝑆

2𝑏−1

)
+ 𝑆, where 𝑏 ∈ [1 − 8] . (3)

Upon applying the first quantization method, we discovered that
as we decreased the bit width, the model’s precision decreased
drastically. This is attributed to the fact that the method does not
consider where the majority of the data is concentrated in the dis-
tribution, resulting in quantization levels being evenly dispersed
throughout the dynamic range. Consequently, opting for 1-bit
quantization sets the majority of the data to 0 and only a few to 1,
thereby rendering feature maps incapable of displaying features. To
mitigate this, we implement a second quantization method exclu-
sively for the 1-bit width scenario. The second quantization method
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utilizes the mean value (𝜇) of the data distribution to determine the
threshold during quantization. This, in turn, facilitates the segrega-
tion of the data distribution at the mean point of the dynamic range,
enabling a more equitable allocation of data points. As a result,
even with 1-bit precision, feature maps can exhibit features. The
second quantization method is characterized by:

𝑑𝑏𝑗 =
⌊
(𝑓𝑗 − 𝜇) /𝑚𝑎𝑥

⌋
, with 𝑏 = 1. (4)

and to convert the data into back to the floating point representation

𝑓 ′𝑗 =

(
𝑑𝑏𝑗 ×𝑚𝑎𝑥

)
+ 𝜇 𝑤ℎ𝑒𝑟𝑒, 𝑏 = 1. (5)

The resulting feature map 𝑓 ′
𝑗
is fed as input into the first layer

of the CNN model after the partition point 𝑗 at the edge device.
𝑓 ′
𝑗
≠ 𝑓𝑗 due to quantization.
Quantization reduces the amount of information in data, which

often requires data packing to effectively reduce the size of the
data. Data packing involves grouping multiple data into a single
8-bit number. The packing factor varies depending on the quanti-
zation level. For instance, a 4-bit quantization results in a packing
factor of 2, as two 4-bit data are combined into one 8-bit data.

The interface (cf. Figure 2) requires additional processing steps
per partition point and quantization method applied. Subsequently,
for quantization method 1 we create 8 new versions of the model
for each partition point, one per bit-precision level under test. For
quantization method 2, we create one additional model per partition
point. In addition, we consider partitions 0 and 6, where for the
former we send the JPEG compressed input images and for the
latter we send the final result after inference. This corresponds to
unaltered models, that are however executed in different locations.
Thus, we consider 5 · 8 + 5 + 1 = 46 model implementations. For
each model variant, the initial CNN model 𝑀 is partitioned and
implemented in two parts, one part for implementation on the node,
𝑀

1.. 𝑗
𝑁𝑜𝑑𝑒

, and the other part for implementation in the edge,𝑀 𝑗+1..𝑁
𝐸𝑑𝑔𝑒

.
The two models together with the interface, 𝐼 , between the two
parts result in a transformed CNN model𝑀′:

𝑀′ = 𝑀
1.. 𝑗
𝑁𝑜𝑑𝑒

∪ 𝐼 ∪𝑀
𝑗+1..𝑁
𝐸𝑑𝑔𝑒

(6)

The model𝑀′ is then re-trained to adopt the original weights to
the new transformed model, which in the results section compared
to the initial model𝑀 , which is TY3 in our case study. For partition
point 𝑗 = 0, we study the impact of different JPEG compression
qualities as well, to also show potential reduction options at this
point. Table 1 lists the combinations considered in this analysis.

Table 1: Experiment configuration.

Reduction
𝑗∗

Bit Compression Model
methods precision quality implementations

JPEG 0 N/A 100,50,30,20,10 Initial
Quantization 1 1-5 1-8 N/A 40 retrained
Quantization 2 1-5 1 N/A 5 retrained

N/A 6 N/A N/A Initial
∗j = Partitioning number

4 RESULTS
We introduce partition points to TY3 by adding the interface layers
to the original model as described in Section 3. All model variants
were trained with the MIUN-feet dataset [16]. The values of the
processing latency and energy (𝐸𝑃 ) of the node use the implemen-
tation carried out by Ivanov [4]. It uses a Neural Compute Stick
2 hardware accelerator to run the network. The compression la-
tency and energy were measured on a Raspberry Pi using an UNI-T
multimeter tester and considering the size of the data after quanti-
zation and packaging. The communication delay and energy (𝐸𝐶 )
were calculated using the models in [6] and the processing time
in the edge node is measured on a NVIDIA GeForce RTX 3090
GPU. Table 2 shows the energy and latency measurements per TY3
block between the partition points.for Our analysis focused only on
the energy consumption at the node (𝐸𝑁𝑜𝑑𝑒 ), and not the energy
utilization at the edge node (𝐸𝐸𝑑𝑔𝑒 ).

Table 2: Processing energy and latency per CNN section

𝑗∗
𝐸𝑁𝑜𝑑𝑒 𝐿𝑁𝑜𝑑𝑒 𝐿𝐸𝑑𝑔𝑒 Size
(𝑚𝐽 ) (𝑚𝑆 ) (𝑚𝑆 ) (𝐵𝑦𝑡𝑒𝑠)

0 – – – 2 076 672
1 14.74 8.22 3.25 2 768 896
2 6.50 3.00 1.18 1 384 448
3 3.59 1.44 0.57 692 224
4 3.21 1.29 0.51 346 112
5 3.59 1.46 0.58 692 224
6 59.05 25.14 9.92 50
∗j = Partitioning number

We train a TY3 model with the MIUN-feet dataset with no parti-
tioning as referencereference. This shows aMean Average Precision
mAP of 99.11% for Intersection over Union IoU = 0.5 and confidence
threshold 0.45. This matches the performance reported by [3].

Figure 3 illustrates the impact of different bit precision to the fea-
ture maps. Figure 3b shows a initial 32-bit feature map at partition
𝑗 = 4, while Figure 3c shows a 1-bit feature map using quantization
method 2. This shows that the feet can be identified in both, despite
the significant data reduction after quantization. Therefore, method
two preserves enough information for later detection of the feet.

(a) Input image (b) 32-bits (c) 1-bit

Figure 3: Input image and feature maps with different bit precision.

Figure 4 shows the accuracy of all model variants with respect
to the altered bit-precision and resulting data amount per partition
point. Regarding the first partitioning point, 𝑗 = 0, i.e. where the
TY3 model is implemented on the edge device, the data transferred
to the edge is compressed using JPEG compression. In this case,
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we evaluated the compression ratios in Table 1 against the overall
detection accuracy of the TY3.

Figure 4: This graph compares the accuracy of 46 models with the
size of the data, at the partition point and at the system input.

For partitioning points with 𝑗 ∈ [1..5] the quantization and
compression interface is introduced, as described in the method
section, resulting in 45 variations of the model. Retraining the
models managed to keep most of the accuracy values close to the
initial model (mAP=99.11%). In order to evaluate the model variants,
we chose an accuracy threshold of 96%. Models considered for
implementation should have an mAP above this threshold.

Regarding the achieved accuracy, we observe that despite retrain-
ing the models, the accuracy of the model drops due to quantization
and the drop becomes significant when using quantization method
1 with a bit-precision of 3-bit or lower. However, when applying
quantization method 2, we are able to retain a good accuracy even
for the 1-bit-precision case. This is because quantization method 2
is fairer in selecting which levels correspond to which values.

As expected, the data 𝑐 𝑗 is reduced as we reduce the bit precision.
If we compare the 1-bit precision feature maps, the data is larger
when applying method 2. The better distribution of the data values
using method 2 limits the compression efficiency of ZIP.

Figure 5 shows latency and energy for seven model variants,
one all-at-the-server, five with distributed processing and the all-in-
node case. In addition, the effects of compression for each partition-
ing point are part of the analysis. From Figure 4, we chose the model
with JPEG compression quality 20 which shows the highest data
reduction (97.8%) while maintaining a performance (98.6%) over
the mAP threshold. For minimum energy consumption under the
accuracy constraint of mAP ≥ 96%, we use the bit precision which
results in the best mAP per partition point. For the first two points
( 𝑗 = 1 and 𝑗 = 2), 1 bit quantization is used along with quantization
method 2. For the remaining points ( 𝑗 = 3 to 𝑗 = 5), quantization
method 1 is used, with partition points 𝑗 = 3 and 𝑗 = 4 using 3 bit
and partition point 𝑗 = 5 using 2 bit.

Depending on the communication technology, the behavior in
the latency and energy differs. The best design solution for latency

Figure 5: Latency and energy after applying partitions to the system
and sending the data with different communication technologies.

is partition point 𝑗 = 5 for Bluetooth 4.0 and 5.0. For LTE-C4 and
Wi-Fi the best is the partition point 𝑗 = 1. Regarding energy, the
best partition solutions are the partition point 𝑗 = 3 for Bluetooth
4.0 and LTE-C4 and partition point 𝑗 = 1 Bluetooth 5.0 and Wi-Fi.

For each communication technology, several valid partitioning
options exist that improve both latency and energy consumption
compared to partition point 𝑗 = 0, even with the low JPEG qual-
ity setting. Comparing to the all-in-node processing case ( 𝑗 = 6),
partitioning is better from the energy perspective but only with
Wi-Fi the latency is enhanced too. Table 3 summarizes the gains
comparing the best solutions. The best partitioning variants use
Wi-Fi to transfer the data at partition point j=1. Wi-Fi is also the
best option for cases without partitioning.

Table 3: Advantages of the partitioning design solution. All
variants considered use Wi-Fi.

All In-Server All In-Node

Energy saving x1.26 x3.8
System speed-up x2.05 x1.05

5 DISCUSSION
When comparing partitioned model variants to the performance
of applying JPEG compression only at the node and executing the
model at the edge device, the data is almost 10 times larger than the
best partition solution, for a similar accuracy. There are however
differences in the performance depending on the partition point and
the applied bit-precision. The quantization of the feature maps in
combination with compression can result in a significant reduction
of data with almost unaffected accuracy in terms of mAP. However,
there are other cases that do not work at all.

The solution that gives the lowest data amount is partition point
𝑗 = 5 using 2-bit data representation. At this point, the data is
reduced by 99.8%. However, this point shows an accuracy only
slightly above the threshold of 96% and is the only partition point
showing a good accuracy with 2-bit resolution. This clearly shows
the need to explore the design space. Other partition points with
high data reduction and high accuracy are the partition points 𝑗 = 3
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and 𝑗 = 4 using a 3-bit representation. These provide an accuracy
of 98.96% and 98.82% respectively while reducing the data by 98.98%
for partition point 𝑗 = 3 and 99.28% for partition point 𝑗 = 4.

Most 2-bit and all 1-bit representations of the first quantiza-
tion method show a significantly reduced accuracy, rendering the
method infeasible. Analyzing these cases shows that a large portion
of the feature maps will be constantly set to zero due to the distribu-
tion of the values. This could be interpreted as accidental pruning
of the feature map and thus we lose too much information in these
cases. Using quantization method 2, we adopt the quantization
level to the average distribution of the feature maps. This shows a
clear improvement of the mAP for 1-bit representations compared
to the first method, but it also increases the data size. The main
explanation is that the pruning effect in method 1 improves the
performance of the applied ZIP compression since several values in
the feature maps are set to zero. However, the data is still reduced
significantly in that case as well, with good accuracy results.

The data reduction additionally frees communication bandwidth.
Based on the shown reduction potential, we analyzed whether the
cost to quantize, pack and compress the data is actually enhancing
the overall system performance due to the reduced communication
effort. Regarding the overall latency the dominant factor is commu-
nication. This is not a surprise since CV systems typically have to
handle large amounts of data, resulting in longer communication
activity. As for the node energy, the processing energy is the main
contributor for high bandwidth communication protocols such as
Wi-Fi and LTE-C4. This clearly highlights the need for design space
evaluations. Our best model variant is able to achieve a better per-
formance in terms of energy and latency despite the additional
cost for the Interface 𝐼 implementation compared to the extreme
cases 𝑗 = 0 and 𝑗 = 6. This shows the potential to further enhance
other tools that so far only focus on splitting the CNNs at a specific
partition point rather than actively reducing the data. To further
analyze the potential of such interface layers, we plan to apply it to
further models and datasets. We do expect similar findings, since
the steps are not depending on the structure of the CNN analyzed.

The results for 1-bit resolution using the quantization method
two and the fact that method one gives the lowest data for 2- and 3-
bit resolution with high accuracy show that further enhancements
of our method are possible. Considering that the low data for the 2-
and 3-bit resolution results from a bias in the quantization based
on the input data, one could try to actively use this information to
build a pruning method for the corresponding filters and combine
that with an efficient 1-bit representation of the remaining data.
We thus plan to investigate such an interface to minimize the data
amount to transfer and thus the communication cost.

6 CONCLUSIONS
Node off-loading on CNN-based systems can be difficult due to
the large amount of data handled by the system. In this paper,
we showed a solution exploring quantization and compression at
different points in the CNN. We were able to reduce the amount of
data between partitions in a Tiny YOLOv3 network by up to 99.8%.

In an IoT scenario, where a feet positioning system is used as a
control signal for a powered wheelchair, we were able to reduce
the energy consumption at the node by partitioning the model

between node and edge accuracy. Additionally, we decreased the
overall latency of the system when compared to sending JPEG
compressed images directly to the edge service, by identifying the
best communication option. In future work, we plan to generalize
the approach to other CNN networks and investigate distribution-
specific quantization methods in combination with pruning and
compression of feature map connections between CNN layers to
retain accuracy.
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